TIME OF RUN 12:08:37.2

DATE OF RUN 01/08/99

INPUT FILE NAME: 25-co6-r.inp

OUTPUT FILE NAME: 25-co6-r.out

ACKNOWLEDGEMENT OF GOVERNMENT SPONSORSHIP AND

LIMITATION OF LIABILITY

This material resulted from work developed under U.S. Department of Energy, Office of Environmental Restoration and Waste Management,

DOE Field Office, Idaho, Contract Number DE-AC07-76ID01570.

This material is subject to a limited government license:

Copyright 1993, EG&G Idaho Inc., Idaho National Engineering Laboratory,
all rights reserved. Neither the United States nor the United States

Department of Energy, nor any of their employees, makes any warranty
expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product or process disclosed, or represents that
its use would not infringe on privately owned rights. Subroutines GOLDEN,
QSIMP, QGAUS, and TRAPZD are Copyright (C) 1992, Numerical Recipes

Software. Reproduced by permission from the book, Numerical Recipes,
Cambridge University Press.

*

* This output was produced by the model: *

*

*	GWSCREEN	*
*	Version Control Copy, Version 2.4a	*
*	A semi-analytical model for the assessment	*
*	of the groundwater pathway from the leaching	*
*	of surficial and buried contamination and	*
*	release of contaminants from percolation ponds	*
*	02-28-95	*
*	Arthur S. Rood	*
*	Idaho National Engineering Laboratory	*
*	EG&G Idaho Inc.	*
*	Subsurface and Environmental Modeling Unit	*
*	PO Box 1625	*
*	Idaho Falls, Idaho 83415	*
**	***************	**
>>>	TITLE OF PROJECT:	
	TITLE OF PROJECT: -60, ARA-25, risk' TITLE	
'Co	-60, ARA-25, risk' TITLE	
'Co ~~~ GAU	-60, ARA-25, risk' TITLE	
'Co GAU MOD	-60, ARA-25, risk' TITLE	
'Co ~~~ GAU MOD IMO	-60, ARA-25, risk' TITLE	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
'Co GAU MOD IMO KFL	-60, ARA-25, risk' SSIAN QUADRATURE SOLUTION EL OPTIONS DE: 2 AG: 1 (0) CONC VS TIME; (1) PEAK CONC AND LIMITING DEL:1 (1) SURF OR BURIED SOURCE; (2) POND SOURCE	G SOIL CONC
GAU MOD IMO KFL IMO FUNCT	-60, ARA-25, risk' SSIAN QUADRATURE SOLUTION EL OPTIONS DE: 2 AG: 1 (0) CONC VS TIME; (1) PEAK CONC AND LIMITING DEL:1 (1) SURF OR BURIED SOURCE; (2) POND SOURCE	G SOIL CONC ; (3) TABULATED SOURCE
'Co GAU MOD IMO KFL IMO FUNCT	-60, ARA-25, risk' SSIAN QUADRATURE SOLUTION EL OPTIONS DE: 2 AG: 1 (0) CONC VS TIME; (1) PEAK CONC AND LIMITING DEL:1 (1) SURF OR BURIED SOURCE; (2) POND SOURCE ION	G SOIL CONC ; (3) TABULATED SOURCE
'Co GAU MOD IMO KFL IMO FUNCT ITY	-60, ARA-25, risk' SSIAN QUADRATURE SOLUTION EL OPTIONS DE: 2 AG: 1 (0) CONC VS TIME; (1) PEAK CONC AND LIMITING DEL:1 (1) SURF OR BURIED SOURCE; (2) POND SOURCE ION PE:0 (0) VERT AVG; (1) NON-VERT AVG; (2) AVG FR	G SOIL CONC ; (3) TABULATED SOURCE OM 0 TO ZD
'Co GAU MOD IMO KFL IMO FUNCT ITY >>>	-60, ARA-25, risk' SSIAN QUADRATURE SOLUTION EL OPTIONS DE: 2 AG: 1 (0)CONC VS TIME; (1)PEAK CONC AND LIMITING DEL:1 (1) SURF OR BURIED SOURCE; (2)POND SOURCE ION PE:0 (0) VERT AVG; (1) NON-VERT AVG; (2) AVG FR INPUT DATA	G SOIL CONC ; (3) TABULATED SOURCE OM 0 TO ZD

WIDTH OF SOURCE PERPENDICULAR TO GW FLOW (m)	4.90E+00
THICKNESS OF SOURCE (m)	1.50E+00
PERCOLATION RATE (darcy vel m/y)	1.00E-01
VOLUMETRIC WATER CONTENT IN SOURCE	4.10E-01
VOLUMETRIC WATER CONTENT IN UNSATURATED ZONE	4.10E-01
BULK DENSITY AT SOURCE (g/cm**3)	1.50E+00
SORPTION COEFFICIENT AT SOURCE (ml/g)	1.00E+01
BULK DENSITY IN UNSAT ZONE (g/cm**3)	1.90E+00
UNSATURATED ZONE THICKNESS (m)	5.80E+00
SORPTION COEFFICIENT IN UNSAT ZONE (ml/g)	1.00E+00
OPTIONAL LOSS RATE CONSTANT FOR SOURCE (y**-1) 0.00E+00
INITIAL MASS OR ACTIVITY (mg or Ci)	1.58E-04
MOLECULAR WEIGHT (g/mole)	6.00E+01
SOLUBILITY LIMIT (mg/L)	1.00E+06
HALF-LIFE(S) OF CONTAMINANT AND PROGENY (y)	5.27E+00
BULK DENSITY OF AQUIFER (g/cm**3)	1.90E+00
POROSITY OF AQUIFER	1.00E-01
SORPTION COEFFICIENT(S) IN AQUIFER (ml/g)	1.00E+00
DISPERSIVITY X DIRECTION (m)	9.00E+00
DISPERSIVITY Y DIRECTION (m)	4.00E+00
DISPERSIVITY Z DIRECTION (m)	1.00E+00
PORE VELOCITY (m/y)	5.70E+02
WELL SCREEN THICKNESS (m)	1.50E+01
DISTANCE TO RECEPTOR ALONG X AXIS (m)	3.65E+00
DISTANCE TO RECEPTOR ALONG Y AXIS (m)	0.00E+00
DISTANCE TO RECEPTOR ALONG Z AXIS (m)	0.00E+00
RADIOLOGICAL CARCINOGENIC SLOPE FACTOR (1/Ci)	1.90E+01
UNITS OF CONTAMINANT	Ci

LINTERNO GOTE CONCENEDATION CALCULATION		
LIMITING SOIL CONCENTRATION CALCULATION >>> INITIAL ACTIVITY CONVERTED TO MASS (mg) 1.40E-04		
>>> VALUES CALCULATED IN SOURCE SU	BROUTINE	
*********	*****	
LEACH RATE CONSTANT (1/y)	4.3262E-03	
UNSATURATED PORE VELOCITY (m/y)	2.4390E-01	
DECAY CONSTANT(S) (1/y)	1.3153E-01	
RETARDATION FACTOR(S) (SATURATED)	2.0000E+01	
RETARDATION FACTOR (UNSATURATED)	5.6341E+00	
SOLUBILITY LIMITED MASS (mg)	8.2682E+11	
SOLUBILITY LIMITED ACTIVITY (Ci)	9.3558 E+1 1	
TRANSIT TIME IN UNSAT ZONE (years) 1.3398E+02		
FRACTION DECAYED DURING UNSAT TRANSPORT 1.0000E+00		
>>> EXPOSURE DATA FOR LIMITING SOI	L CONCENTRATION	
*********	*****	
INTEGRATION TIME (years)	30	
BODY WEIGHT (kg)	7.000E+01	
AVERAGING TIME (days)	2.550E+04	
WATER INTAKE RATE (L/d)	2.000E+00	
EXPOSURE FREQUENCY (days/year)	3.500 E+02	
EXPOSURE DURATION (years)	3.000E+01	
RADIOLOGICAL DOSE LIMIT (rem/y)	4.000E-03	
CARCINOGENIC RISK CRITERIA	1.000E-04	
HAZARD QUOTIENT	1.000E+00	

CARCINOGENIC RISK CALCULATION FOR RADIONUCLIDES

MAXIMUM GW CONCENTRATION FOR MBR #1: 7.60E-22 Ci/L

AVERAGE GW CONCENTRATION FOR MBR #1: 2.22E-22 Ci/L RISK = 8.86E-17

MAXIMUM CARCINOGENIC RISK: 8.86E-17

LIMITING PARENT GROUNDWATER CONC. (Ci/L): 2.51E-10

PEAK TIME (y): 1.350270E+02

LIMITING SOIL CONCENTRATION (Ci/m**3): 3.324E+06

LIMITING SOIL CONCENTRATION (Ci/kg): 2.216E+03

LIMITING INVENTORY IN SOIL (Ci): 1.783E+08

LIMITING INVENTORY IN SOIL (mg): 1.576E+08

SPECIFIC ACTIVITY (Ci/g): 1.132E+03

'Cs-134, ARA-25, risk' TITLE 1 0 KFLAG, NPROG 30 0 INTIME 7.3 4.9 1.5 AL, WA, THICKS 0.1 .41 .41 PERC, THETAS, THETAU 1.5 500. 0. RHOS, ZKDS, RC2 1.9 50. RHOU, ZKDU 2.06 ATHALF 8.44E-05 134. 1.0e6 QI, ZMW, SL 1.9 .1 50. RHOA, PHI, AKD 9. 4. 1. 570.0 AX, AY, VX

2 1 IMODE, IMODEL 9E2 2. 7.58E5 .41 0. 165. RMI, TOPER, PNDFLX, THETAP, EVAP, WAEFF

THICK, DEPTH

4.7E+01 SFACTOR

3.65 0. 0. XD, YD

15.0 5.8

70. 2.55e4 2. 350. 30. 4.e-3 1.0e-4 1. BW AT WI EF ED DLIM CRISK HQ

1 6 7 1.0e-6 ISOLVE, JSTART, JMAX, EPS

1 NTIMES

TIME OF RUN 12:09:03.2

DATE OF RUN 01/08/99

INPUT FILE NAME: 25-cs4-r.inp

OUTPUT FILE NAME: 25-cs4-r.out

ACKNOWLEDGEMENT OF GOVERNMENT SPONSORSHIP AND LIMITATION OF LIABILITY

This material resulted from work developed under U.S. Department of Energy, Office of Environmental Restoration and Waste Management,

DOE Field Office, Idaho, Contract Number DE-AC07-76ID01570.

This material is subject to a limited government license:

Copyright 1993, EG&G Idaho Inc., Idaho National Engineering Laboratory,

all rights reserved. Neither the United States nor the United States

Department of Energy, nor any of their employees, makes any warranty

expressed or implied, or assumes any legal liability or

responsibility for the accuracy, completeness, or usefulness of any

information, apparatus, product or process disclosed, or represents that

its use would not infringe on privately owned rights. Subroutines GOLDEN,

QSIMP, QGAUS, and TRAPZD are Copyright (C) 1992, Numerical Recipes

Software. Reproduced by permission from the book, Numerical Recipes,

Cambridge University Press.

This output was produced by the model:

	* GWSCREEN	*
	* Version Control Copy, Version 2.4a	*
	* A semi-analytical model for the assessment	*
	* of the groundwater pathway from the leaching	*
	* of surficial and buried contamination and	*
	* release of contaminants from percolation ponds	*
	* 02-28-95	*
	* Arthur S. Rood	*
	* Idaho National Engineering Laboratory	*
	* EG&G Idaho Inc.	*
	* Subsurface and Environmental Modeling Unit	*
	* PO Box 1625	*
	* Idaho Falls, Idaho 83415	*
	************	**
	>>> TITLE OF PROJECT:	
	'Cs-134, ARA-25, risk' TITL	E
	و المراجع المر	
	GAUSSIAN QUADRATURE SOLUTION	
	MODEL OPTIONS	
	IMODE: 2	
	KFLAG: 1 (0)CONC VS TIME; (1)PEAK CONC AND LIMITING	G SOIL CONC
FU	IMODEL:1 (1) SURF OR BURIED SOURCE; (2) POND SOURCE UNCTION	; (3) TABULATED SOURCE
	ITYPE:0 (0) VERT AVG; (1) NON-VERT AVG; (2) AVG FRO	OM 0 TO ZD
	>>> INPUT DATA	
	************	****
	NUMBER OF RADIOACTIVE PROGENY 0	
	LENGTH OF SOURCE PARALLEL TO GW FLOW (m) 7.30	0E+00

WIDTH OF SOURCE PERPENDICULAR TO GW FLOW (m)	4.90E+00
THICKNESS OF SOURCE (m)	1.50E+00
PERCOLATION RATE (darcy vel m/y)	1.00E-01
VOLUMETRIC WATER CONTENT IN SOURCE	4.10E-01
VOLUMETRIC WATER CONTENT IN UNSATURATED ZONE	4.10E-01
BULK DENSITY AT SOURCE (g/cm**3)	1.50E+00
SORPTION COEFFICIENT AT SOURCE (ml/g)	5.00E+02
BULK DENSITY IN UNSAT ZONE (g/cm**3)	1.90E+00
UNSATURATED ZONE THICKNESS (m)	5.80E+00
SORPTION COEFFICIENT IN UNSAT ZONE (ml/g)	5.00E+01
OPTIONAL LOSS RATE CONSTANT FOR SOURCE (y**-1)	0.00E+00
INITIAL MASS OR ACTIVITY (mg or Ci)	8.44E-05
MOLECULAR WEIGHT (g/mole)	1.34E+02
SOLUBILITY LIMIT (mg/L)	1.00E+06
HALF-LIFE(S) OF CONTAMINANT AND PROGENY (y)	2.06E+00
BULK DENSITY OF AQUIFER (g/cm**3)	1.90E+00
POROSITY OF AQUIFER	1.00E-01
SORPTION COEFFICIENT(S) IN AQUIFER (ml/g)	5.00E+01
DISPERSIVITY X DIRECTION (m)	9.00E+00
DISPERSIVITY Y DIRECTION (m)	4.00E+00
DISPERSIVITY Z DIRECTION (m)	1.00E+00
PORE VELOCITY (m/y)	5.70E+02
WELL SCREEN THICKNESS (m)	1.50E+01
DISTANCE TO RECEPTOR ALONG X AXIS (m)	3.65E+00
DISTANCE TO RECEPTOR ALONG Y AXIS (m)	0.00E+00
DISTANCE TO RECEPTOR ALONG Z AXIS (m)	0.00E+00
RADIOLOGICAL CARCINOGENIC SLOPE FACTOR (1/Ci)	4.70E+01
UNITS OF CONTAMINANT	Ci

LIMITING SOIL CONCENTRATION CALCULATION		
>>> INITIAL ACTIVITY CONVERTED TO	MASS (mg) 6.51E-05	
>>> VALUES CALCULATED IN SOURCE SU	BROUTINE	
********	******	
LEACH RATE CONSTANT (1/y)	8.8840E-05	
UNSATURATED PORE VELOCITY (m/y)	2.4390E-01	
DECAY CONSTANT(S) (1/y)	3.3648E-01	
RETARDATION FACTOR(S) (SATURATED)	9.5100E+02	
RETARDATION FACTOR (UNSATURATED)	2.3271E+02	
SOLUBILITY LIMITED MASS (mg)	4.0263E+13	
SOLUBILITY LIMITED ACTIVITY (Ci)	5.2188E+13	
TRANSIT TIME IN UNSAT ZONE (years) 5.5338E+03		
FRACTION DECAYED DURING UNSAT TRANSPORT 1.0000E+00		
~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~		
>>> EXPOSURE DATA FOR LIMITING SOI	L CONCENTRATION	
**********	******	
INTEGRATION TIME (years)	30	
BODY WEIGHT (kg)	7.000E+01	
AVERAGING TIME (days)	2.550E+04	
WATER INTAKE RATE (L/d)	2.000E+00	
EXPOSURE FREQUENCY (days/year)	3.500E+02	
EXPOSURE DURATION (years)	3.000E+01	
RADIOLOGICAL DOSE LIMIT (rem/y)	4.000E-03	
CARCINOGENIC RISK CRITERIA	1.000E-04	
HAZARD QUOTIENT	1.000E+00	

CARCINOGENIC RISK CALCULATION FOR RADIONUCLIDES

MAXIMUM GW CONCENTRATION FOR MBR #1: 4.40-234 Ci/L

AVERAGE GW CONCENTRATION FOR MBR #1: 9.16-235 Ci/L RISK = 9.04-229

MAXIMUM CARCINOGENIC RISK: 9.04-229

LIMITING PARENT GROUNDWATER CONC. (Ci/L): 1.01E-10

PEAK TIME (y): 5.535852E+03

LIMITING SOIL CONCENTRATION (Ci/m**3): 1.739+218

LIMITING SOIL CONCENTRATION (Ci/kg): 1.159+215

LIMITING INVENTORY IN SOIL (Ci): 9.332+219

LIMITING INVENTORY IN SOIL (mg): 7.200+219

SPECIFIC ACTIVITY (Ci/g): 1.296E+03

NOTE: THE LIMITING SOIL CONCENTRATION OF 1.159+212 Ci/g

EXCEEDS THE SPECIFIC ACTIVITY OF THE NUCLIDE.

WARNING !!! THE LIMITING SOIL MASS OF 7.200+219 mg

EXCEEDS THE SOLUBILITY LIMITED SOURCE MASS OF 4.026E+13 mg

'Cs-137, ARA-25, risk' TITLE 1 0 KFLAG, NPROG 30 0 INTIME 7.3 4.9 1.5 AL, WA, THICKS 0.1 .41 .41 PERC, THETAS, THETAU RHOS, ZKDS, RC2 1.5 500. 0. 1.9 50. RHOU, ZKDU 30.2 ATHALF 3.64E-02 137. 1.0e6 QI, ZMW, SL 1.9 .1 50. RHOA, PHI, AKD AX, AY, VX 9. 4. 1. 570.0 15.0 5.8 THICK, DEPTH 2 1 IMODE, IMODEL 9E2 2. 7.58E5 .41 0. 165. RMI, TOPER, PNDFLX, THETAP, EVAP, WAEFF SFACTOR 3.2E+01 3.65 0. 0. XD, YD 70. 2.55e4 2. 350. 30. 4.e-3 1.0e-4 1. BW AT WI EF ED DLIM CRISK HQ

ISOLVE, JSTART, JMAX, EPS

NTIMES

1 6 7 1.0e-6

1

TIME OF RUN 12:09:21.0

DATE OF RUN 01/08/99

INPUT FILE NAME: 25-cs7-r.inp

OUTPUT FILE NAME: 25-cs7-r.out

ACKNOWLEDGEMENT OF GOVERNMENT SPONSORSHIP AND

LIMITATION OF LIABILITY

This material resulted from work developed under U.S. Department of Energy, Office of Environmental Restoration and Waste Management,

DOE Field Office, Idaho, Contract Number DE-ACO7-76ID01570.

This material is subject to a limited government license:

Copyright 1993, EG&G Idaho Inc., Idaho National Engineering Laboratory,

all rights reserved. Neither the United States nor the United States

Department of Energy, nor any of their employees, makes any warranty

expressed or implied, or assumes any legal liability or

responsibility for the accuracy, completeness, or usefulness of any

information, apparatus, product or process disclosed, or represents that

its use would not infringe on privately owned rights. Subroutines GOLDEN,

QSIMP, QGAUS, and TRAPZD are Copyright (C) 1992, Numerical Recipes

Software. Reproduced by permission from the book, Numerical Recipes,

Cambridge University Press.

* This output was produced by the model:

*	GWSCREEN	*	
*	Version Control Copy, Version 2.4a	*	
*	A semi-analytical model for the assessment	*	
*	of the groundwater pathway from the leaching	*	
*	of surficial and buried contamination and	*	
*	release of contaminants from percolation ponds	*	
*	02-28-95	*	
*	Arthur S. Rood	*	
*	Idaho National Engineering Laboratory	*	
*	EG&G Idaho Inc.	*	
*	Subsurface and Environmental Modeling Unit	*	
*	PO Box 1625	*	
*	Idaho Falls, Idaho 83415	*	
**	**************	**	
>>>	TITLE OF PROJECT:		
'Cs	-137, ARA-25, risk' TITL	5	
GAUSSIAN QUADRATURE SOLUTION			
GAU			
MOD	SSIAN QUADRATURE SOLUTION		
MOD	SSIAN QUADRATURE SOLUTION EL OPTIONS		
MOD IMO KFL	SSIAN QUADRATURE SOLUTION EL OPTIONS DE: 2 AG: 1 (0)CONC VS TIME; (1)PEAK CONC AND LIMITING DEL:1 (1) SURF OR BURIED SOURCE; (2)POND SOURCE	G SOIL CONC	
MOD IMO KFL IMO FUNCT	SSIAN QUADRATURE SOLUTION EL OPTIONS DE: 2 AG: 1 (0)CONC VS TIME; (1)PEAK CONC AND LIMITING DEL:1 (1) SURF OR BURIED SOURCE; (2)POND SOURCE	G SOIL CONC ; (3) TABULATED SOURCE	
MOD IMO KFL IMO FUNCT ITY	SSIAN QUADRATURE SOLUTION EL OPTIONS DE: 2 AG: 1 (0)CONC VS TIME; (1)PEAK CONC AND LIMITING DEL:1 (1) SURF OR BURIED SOURCE; (2)POND SOURCE ION	G SOIL CONC ; (3) TABULATED SOURCE	
MOD IMO KFL IMO FUNCT ITY >>>	SSIAN QUADRATURE SOLUTION EL OPTIONS DE: 2 AG: 1 (0)CONC VS TIME; (1)PEAK CONC AND LIMITING DEL:1 (1) SURF OR BURIED SOURCE; (2)POND SOURCE ION PE:0 (0) VERT AVG; (1) NON-VERT AVG; (2) AVG FRO	G SOIL CONC ; (3) TABULATED SOURCE DM 0 TO ZD	
MOD IMO KFL IMO FUNCT ITY >>>	SSIAN QUADRATURE SOLUTION EL OPTIONS DE: 2 AG: 1 (0)CONC VS TIME; (1)PEAK CONC AND LIMITING DEL:1 (1) SURF OR BURIED SOURCE; (2)POND SOURCE ION PE:0 (0) VERT AVG; (1) NON-VERT AVG; (2) AVG FRO	G SOIL CONC ; (3) TABULATED SOURCE DM 0 TO ZD	

LENGTH OF SOURCE PARALLEL TO GW FLOW (m) 7.30E+00

WIDTH OF SOURCE PERPENDICULAR TO GW FLOW (m)	4.90E+00
THICKNESS OF SOURCE (m)	1.50E+00
PERCOLATION RATE (darcy vel m/y)	1.00E-01
VOLUMETRIC WATER CONTENT IN SOURCE	4.10E-01
VOLUMETRIC WATER CONTENT IN UNSATURATED ZONE	4.10E-01
BULK DENSITY AT SOURCE (g/cm**3)	1.50E+00
SORPTION COEFFICIENT AT SOURCE (ml/g)	5.00E+02
BULK DENSITY IN UNSAT ZONE (g/cm**3)	1.90E+00
UNSATURATED ZONE THICKNESS (m)	5.80E+00
SORPTION COEFFICIENT IN UNSAT ZONE (ml/g)	5.00E+01
OPTIONAL LOSS RATE CONSTANT FOR SOURCE (y**-1)	0.00E+00
INITIAL MASS OR ACTIVITY (mg or Ci)	3.64E-02
MOLECULAR WEIGHT (g/mole)	1.37E+02
SOLUBILITY LIMIT (mg/L)	1.00E+06
HALF-LIFE(S) OF CONTAMINANT AND PROGENY (y)	3.02E+01
BULK DENSITY OF AQUIFER (g/cm**3)	1.90E+00
POROSITY OF AQUIFER	1.00E-01
SORPTION COEFFICIENT(S) IN AQUIFER (ml/g)	5.00E+01
DISPERSIVITY X DIRECTION (m)	9.00E+00
DISPERSIVITY Y DIRECTION (m)	4.00E+00
DISPERSIVITY Z DIRECTION (m)	1.00E+00
PORE VELOCITY (m/y)	5.70E+02
WELL SCREEN THICKNESS (m)	1.50E+01
DISTANCE TO RECEPTOR ALONG X AXIS (m)	3.65E+00
DISTANCE TO RECEPTOR ALONG Y AXIS (m)	0.00E+00
DISTANCE TO RECEPTOR ALONG Z AXIS (m)	0.00E+00
RADIOLOGICAL CARCINOGENIC SLOPE FACTOR (1/Ci)	3.20E+01
UNITS OF CONTAMINANT	Ci

ر بن من	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
LIMITING SOIL CONCENTRATION CALCULATION		
>>> INITIAL ACTIVITY CONVERTED TO	MASS (mg) 4.21E-01	
>>> VALUES CALCULATED IN SOURCE SU	BROUTINE	
**********	******	
LEACH RATE CONSTANT (1/y)	8.8840E-05	
UNSATURATED PORE VELOCITY (m/y)	2.4390E-01	
DECAY CONSTANT(S) (1/y)	2.2952E-02	
RETARDATION FACTOR(S) (SATURATED)	9.5100E+02	
RETARDATION FACTOR (UNSATURATED)	2.3271E+02	
SOLUBILITY LIMITED MASS (mg)	4.0263E+13	
SOLUBILITY LIMITED ACTIVITY (Ci)	3.4819E+12	
TRANSIT TIME IN UNSAT ZONE (Years) 5.5338E+03		
FRACTION DECAYED DURING UNSAT TRAN	SPORT 1.0000E+00	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~	
>>> EXPOSURE DATA FOR LIMITING SOI	L CONCENTRATION	
*********	******	
INTEGRATION TIME (years)	30	
BODY WEIGHT (kg)	7.000E+01	
AVERAGING TIME (days)	2.550E+04	
WATER INTAKE RATE (L/d)	2.000E+00	
EXPOSURE FREQUENCY (days/year)	3.500E+02	
EXPOSURE DURATION (years)	3.000E+01	
RADIOLOGICAL DOSE LIMIT (rem/y)	4.000E-03	
CARCINOGENIC RISK CRITERIA	1.000E-04	
HAZARD QUOTIENT	1.000E+00	

********

CARCINOGENIC RISK CALCULATION FOR RADIONUCLIDES

MAXIMUM GW CONCENTRATION FOR MBR #1: 6.96E-69 Ci/L

AVERAGE GW CONCENTRATION FOR MBR #1: 6.06E-69 Ci/L RISK = 4.08E-63

MAXIMUM CARCINOGENIC RISK: 4.08E-63

LIMITING PARENT GROUNDWATER CONC. (Ci/L): 1.49E-10

PEAK TIME (y): 5.547910E+03

LIMITING SOIL CONCENTRATION (Ci/m**3): 1.665E+55

LIMITING SOIL CONCENTRATION (Ci/kg): 1.110E+52

LIMITING INVENTORY IN SOIL (Ci): 8.931E+56

LIMITING INVENTORY IN SOIL (mg): 1.033E+58

SPECIFIC ACTIVITY (Ci/g): 8.648E+01

NOTE: THE LIMITING SOIL CONCENTRATION OF 1.110E+49 Ci/g

EXCEEDS THE SPECIFIC ACTIVITY OF THE NUCLIDE.

WARNING !!! THE LIMITING SOIL MASS OF 1.033E+58 mg

EXCEEDS THE SOLUBILITY LIMITED SOURCE MASS OF 4.026E+13 mg

'Eu-152, ARA-25, risk' TITLE 1 0 KFLAG, NPROG 30 0 INTIME 7.3 4.9 1.5 AL, WA, THICKS PERC, THETAS, THETAU 0.1 .41 .41 1.5 650. 0. RHOS, ZKDS, RC2 RHOU, ZKDU 1.9 65. ATHALF 1.36E1 QI, ZMW, SL 4.0E-04 152. 1.0e6 RHOA, PHI, AKD 1.9 .1 65. 9. 4. 1. 570.0 AX, AY, VX THICK, DEPTH 15.0 5.8 IMODE, IMODEL 2 1 9E2 2. 7.58E5 .41 0. 165. RMI, TOPER, PNDFLX, THETAP, EVAP, WAEFF 5.7e+0 SFACTOR 3.65 0. 0. XD, YD 70. 2.55e4 2. 350. 30. 4.e-3 1.0e-4 1. BW AT WI EF ED DLIM CRISK HQ

ISOLVE, JSTART, JMAX, EPS

NTIMES

1 6 7 1.0e-6

1

TIME OF RUN 12:09:39.4

DATE OF RUN 01/08/99

INPUT FILE NAME: 25-eu2-r.inp

OUTPUT FILE NAME: 25-eu2-r.out

### ACKNOWLEDGEMENT OF GOVERNMENT SPONSORSHIP AND

#### LIMITATION OF LIABILITY

This material resulted from work developed under U.S. Department of Energy, Office of Environmental Restoration and Waste Management,

DOE Field Office, Idaho, Contract Number DE-AC07-76ID01570.

This material is subject to a limited government license:

Copyright 1993, EG&G Idaho Inc., Idaho National Engineering Laboratory,

all rights reserved. Neither the United States nor the United States

Department of Energy, nor any of their employees, makes any warranty

expressed or implied, or assumes any legal liability or

responsibility for the accuracy, completeness, or usefulness of any

information, apparatus, product or process disclosed, or represents that

its use would not infringe on privately owned rights. Subroutines GOLDEN,

QSIMP, QGAUS, and TRAPZD are Copyright (C) 1992, Numerical Recipes

Software. Reproduced by permission from the book, Numerical Recipes,

Cambridge University Press.

*********

* This output was produced by the model:

	GWSCREEN	*
*	Version Control Copy, Version 2.4a	*
*	A semi-analytical model for the assessment	*
*	of the groundwater pathway from the leaching	*
*	of surficial and buried contamination and	*
*	release of contaminants from percolation ponds	*
*	02-28-95	*
*	Arthur S. Rood	*
*	Idaho National Engineering Laboratory	*
*	EG&G Idaho Inc.	*
*	Subsurface and Environmental Modeling Unit	*
.*	PO Box 1625	*
*	Idaho Falls, Idaho 83415	*
**	************	**
>>>	TITLE OF PROJECT:	
	TITLE OF PROJECT: -152, ARA-25, risk' TITL	E
' Eu ~~~		E ~~~~~~
'Eu ~~~ GAU	-152, ARA-25, risk' TITL	E ~~~~~~
'Eu ~~~ GAU MOD	-152, ARA-25, risk' TITL:	E ~~~~~~
'Eu ~~~ GAU MOD IMO	-152, ARA-25, risk' TITL: SSIAN QUADRATURE SOLUTION EL OPTIONS	~~~~~
'Eu ~~~ GAU MOD IMO KFL	-152, ARA-25, risk'  SSIAN QUADRATURE SOLUTION  EL OPTIONS  DE: 2  AG: 1 (0) CONC VS TIME; (1) PEAK CONC AND LIMITING  DEL:1 (1) SURF OR BURIED SOURCE; (2) POND SOURCE	G SOIL CONC
'Eu  GAU  MOD  IMO  KFL  IMO  FUNCT	-152, ARA-25, risk'  SSIAN QUADRATURE SOLUTION  EL OPTIONS  DE: 2  AG: 1 (0) CONC VS TIME; (1) PEAK CONC AND LIMITING  DEL:1 (1) SURF OR BURIED SOURCE; (2) POND SOURCE	G SOIL CONC ; (3) TABULATED SOURCE
'Eu  GAU  MOD  IMO  KFL  IMO  FUNCT	-152, ARA-25, risk'  SSIAN QUADRATURE SOLUTION  EL OPTIONS  DE: 2  AG: 1 (0)CONC VS TIME; (1)PEAK CONC AND LIMITING  DEL:1 (1) SURF OR BURIED SOURCE; (2)POND SOURCE  ION	G SOIL CONC ; (3) TABULATED SOURCE
'Eu  GAU  MOD  IMO  KFL  IMO  FUNCT  ITY	-152, ARA-25, risk'  SSIAN QUADRATURE SOLUTION  EL OPTIONS  DE: 2  AG: 1 (0) CONC VS TIME; (1) PEAK CONC AND LIMITING  DEL:1 (1) SURF OR BURIED SOURCE; (2) POND SOURCE  ION  PE:0 (0) VERT AVG; (1) NON-VERT AVG; (2) AVG FROM	G SOIL CONC ; (3) TABULATED SOURCE OM O TO ZD

LENGTH OF SOURCE PARALLEL TO GW FLOW (m) 7.30E+00

WIDTH OF SOURCE PERPENDICULAR TO GW FLOW (m)	4.90E+00
THICKNESS OF SOURCE (m)	1.50E+00
PERCOLATION RATE (darcy vel m/y)	1.00E-01
VOLUMETRIC WATER CONTENT IN SOURCE	4.10E-01
VOLUMETRIC WATER CONTENT IN UNSATURATED ZONE	4.10E-01
BULK DENSITY AT SOURCE (g/cm**3)	1.50E+00
SORPTION COEFFICIENT AT SOURCE (ml/g)	6.50E+02
BULK DENSITY IN UNSAT ZONE (g/cm**3)	1.90E+00
UNSATURATED ZONE THICKNESS (m)	5.80E+00
SORPTION COEFFICIENT IN UNSAT ZONE (ml/g)	6.50E+01
OPTIONAL LOSS RATE CONSTANT FOR SOURCE (y**-1)	0.00E+00
INITIAL MASS OR ACTIVITY (mg or Ci)	4.00E-04
MOLECULAR WEIGHT (g/mole)	1.52E+02
SOLUBILITY LIMIT (mg/L)	1.00E+06
HALF-LIFE(S) OF CONTAMINANT AND PROGENY (y)	1.36E+01
BULK DENSITY OF AQUIFER (g/cm**3)	1.90E+00
POROSITY OF AQUIFER	1.00E-01
SORPTION COEFFICIENT(S) IN AQUIFER (ml/g)	6.50E+01
DISPERSIVITY X DIRECTION (m)	9.00E+00
DISPERSIVITY Y DIRECTION (m)	4.00E+00
DISPERSIVITY Z DIRECTION (m)	1.00E+00
PORE VELOCITY (m/y)	5.70E+02
WELL SCREEN THICKNESS (m)	1.50E+01
DISTANCE TO RECEPTOR ALONG X AXIS (m)	3.65E+00
DISTANCE TO RECEPTOR ALONG Y AXIS (m)	0.00E+00
DISTANCE TO RECEPTOR ALONG Z AXIS (m)	0.00E+00
RADIOLOGICAL CARCINOGENIC SLOPE FACTOR (1/Ci)	5.70E+00
UNITS OF CONTAMINANT	Ci

	· ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
LIMITING SOIL CONCENTRATION CALCULATION		
>>> INITIAL ACTIVITY CONVERTED TO	MASS (mg) 2.31E-03	
>>> VALUES CALCULATED IN SOURCE SU	JBROUTINE	
*********	*******	
LEACH RATE CONSTANT (1/y)	6.83 <b>47E-</b> 05	
UNSATURATED PORE VELOCITY (m/y)	2.4390E-01	
DECAY CONSTANT(S) (1/y)	5.0967E-02	
RETARDATION FACTOR(S) (SATURATED)	1.2360E+03	
RETARDATION FACTOR (UNSATURATED)	3.0222E+02	
SOLUBILITY LIMITED MASS (mg)	5.2336E+13	
SOLUBILITY LIMITED ACTIVITY (Ci)	9.0583E+12	
TRANSIT TIME IN UNSAT ZONE (years) 7.1868E+03		
FRACTION DECAYED DURING UNSAT TRAN	NSPORT 1.0000E+00	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
>>> EXPOSURE DATA FOR LIMITING SOI	IL CONCENTRATION	
********	******	
INTEGRATION TIME (years)	30	
BODY WEIGHT (kg)	7.000E+01	
AVERAGING TIME (days)	2.550E+04	
WATER INTAKE RATE (L/d)	2.000E+00	
EXPOSURE FREQUENCY (days/year)	3.500E+02	
EXPOSURE DURATION (years)	3.000E+01	
RADIOLOGICAL DOSE LIMIT (rem/y)	4.000E-03	
CARCINOGENIC RISK CRITERIA	1.000E-04	
HAZARD QUOTIENT	1.000E+00	

CARCINOGENIC RISK CALCULATION FOR RADIONUCLIDES

MAXIMUM GW CONCENTRATION FOR MBR #1: 4.75-175 Ci/L

AVERAGE GW CONCENTRATION FOR MBR #1: 3.68-175 Ci/L RISK = 4.41-170

MAXIMUM CARCINOGENIC RISK: 4.41-170

LIMITING PARENT GROUNDWATER CONC. (Ci/L): 8.35E-10

PEAK TIME (y): 7.195601E+03

LIMITING SOIL CONCENTRATION (Ci/m**3): 1.692+160

LIMITING SOIL CONCENTRATION (Ci/kg): 1.128+157

LIMITING INVENTORY IN SOIL (Ci): 9.078+161

LIMITING INVENTORY IN SOIL (mg): 5.245+162

SPECIFIC ACTIVITY (Ci/g): 1.731E+02

NOTE: THE LIMITING SOIL CONCENTRATION OF 1.128+154 Ci/g

EXCEEDS THE SPECIFIC ACTIVITY OF THE NUCLIDE.

WARNING !!! THE LIMITING SOIL MASS OF 5.245+162 mg

EXCEEDS THE SOLUBILITY LIMITED SOURCE MASS OF 5.234E+13 mg

'Eu-154, ARA-25, risk'

TITLE

1 0

KFLAG, NPROG

30 0

INTIME

7.3 4.9 1.5

AL, WA, THICKS

0.1 .41 .41

PERC, THETAS, THETAU

1.5 650. 0.

RHOS, ZKDS, RC2

1.9 65.

RHOU, ZKDU

8.8

ATHALF

2.34E-05 154. 1.0e6

QI, ZMW, SL

1.9 .1 65.

RHOA, PHI, AKD

9. 4. 1. 570.0

AX, AY, VX

15.0 5.8

THICK, DEPTH

2 1

IMODE, IMODEL

9E2 2. 7.58E5 .41 0. 165.

RMI, TOPER, PNDFLX, THETAP, EVAP, WAEFF

9.4e+0

SFACTOR

3.65 0. 0.

XD, YD

70. 2.55e4 2. 350. 30. 4.e-3 1.0e-4 1. BW AT WI EF ED DLIM CRISK HQ

1 6 7 1.0e-6

ISOLVE, JSTART, JMAX, EPS

1

NTIMES

TIME OF RUN 12:09:55.4

DATE OF RUN 01/08/99

INPUT FILE NAME: 25-eu4-r.inp

OUTPUT FILE NAME: 25-eu4-r.out

ACKNOWLEDGEMENT OF GOVERNMENT SPONSORSHIP AND

LIMITATION OF LIABILITY

This material resulted from work developed under U.S. Department of Energy, Office of Environmental Restoration and Waste Management,

DOE Field Office, Idaho, Contract Number DE-AC07-76ID01570.

This material is subject to a limited government license:

Copyright 1993, EG&G Idaho Inc., Idaho National Engineering Laboratory,

all rights reserved. Neither the United States nor the United States

Department of Energy, nor any of their employees, makes any warranty

expressed or implied, or assumes any legal liability or

responsibility for the accuracy, completeness, or usefulness of any

information, apparatus, product or process disclosed, or represents that

its use would not infringe on privately owned rights. Subroutines GOLDEN,

QSIMP, QGAUS, and TRAPZD are Copyright (C) 1992, Numerical Recipes

Software. Reproduced by permission from the book, Numerical Recipes,

Cambridge University Press.

*

* This output was produced by the model:

*	GWSCREEN	*		
*	Version Control Copy, Version 2.4a	*		
*	A semi-analytical model for the assessment	*		
*	of the groundwater pathway from the leaching	*		
*	of surficial and buried contamination and	*		
*	release of contaminants from percolation ponds	*		
*	02-28-95	*		
*	Arthur S. Rood	*		
*	Idaho National Engineering Laboratory	*		
*	EG&G Idaho Inc.	*		
*	Subsurface and Environmental Modeling Unit	*		
*	PO Box 1625	*		
*	Idaho Falls, Idaho 83415	*		

>>	> TITLE OF PROJECT:			
'Ε	u-154, ARA-25, risk' TITL			
GAUSSIAN QUADRATURE SOLUTION				
GA	USSIAN QUADRATURE SOLUTION			
	USSIAN QUADRATURE SOLUTION DEL OPTIONS			
МО				
MO IM	DEL OPTIONS	G SOIL CONC		
MO IM KF IM	DEL OPTIONS ODE: 2			
MO IM KF IM FUNC	DEL OPTIONS ODE: 2 LAG: 1 (0) CONC VS TIME; (1) PEAK CONC AND LIMITIN ODEL:1 (1) SURF OR BURIED SOURCE; (2) POND SOURCE	; (3) TABULATED SOURCE		
MO IM KF IM FUNC	DEL OPTIONS ODE: 2 LAG: 1 (0)CONC VS TIME; (1)PEAK CONC AND LIMITIN ODEL:1 (1) SURF OR BURIED SOURCE; (2)POND SOURCE TION	; (3) TABULATED SOURCE		
MO IM KF IM FUNC	DEL OPTIONS ODE: 2 LAG: 1 (0) CONC VS TIME; (1) PEAK CONC AND LIMITIN ODEL:1 (1) SURF OR BURIED SOURCE; (2) POND SOURCE TION YPE:0 (0) VERT AVG; (1) NON-VERT AVG; (2) AVG FR	; (3) TABULATED SOURCE		
MO IM KF IM FUNC IT >>	DEL OPTIONS ODE: 2 LAG: 1 (0) CONC VS TIME; (1) PEAK CONC AND LIMITIN ODEL:1 (1) SURF OR BURIED SOURCE; (2) POND SOURCE TION YPE:0 (0) VERT AVG; (1) NON-VERT AVG; (2) AVG FR > INPUT DATA	; (3) TABULATED SOURCE		

LENGTH OF SOURCE PARALLEL TO GW FLOW (m) 7.30E+00

WIDTH OF SOURCE PERPENDICULAR TO GW FLOW (m)	4.90E+00
THICKNESS OF SOURCE (m)	1.50E+00
PERCOLATION RATE (darcy vel m/y)	1.00E-01
VOLUMETRIC WATER CONTENT IN SOURCE	4.10E-01
VOLUMETRIC WATER CONTENT IN UNSATURATED ZONE	4.10E-01
BULK DENSITY AT SOURCE (g/cm**3)	1.50E+00
SORPTION COEFFICIENT AT SOURCE (ml/g)	6.50E+02
BULK DENSITY IN UNSAT ZONE (g/cm**3)	1.90E+00
UNSATURATED ZONE THICKNESS (m)	5.80E+00
SORPTION COEFFICIENT IN UNSAT ZONE (ml/g)	6.50E+01
OPTIONAL LOSS RATE CONSTANT FOR SOURCE (y**-1)	0.00E+00
INITIAL MASS OR ACTIVITY (mg or Ci)	2.34E-05
MOLECULAR WEIGHT (g/mole)	1.54E+02
SOLUBILITY LIMIT (mg/L)	1.00E+06
HALF-LIFE(S) OF CONTAMINANT AND PROGENY (y)	8.80E+00
BULK DENSITY OF AQUIFER (g/cm**3)	1.90E+00
POROSITY OF AQUIFER	1.00E-01
SORPTION COEFFICIENT(S) IN AQUIFER (ml/g)	6.50E+01
DISPERSIVITY X DIRECTION (m)	9.00E+00
DISPERSIVITY Y DIRECTION (m)	4.00E+00
DISPERSIVITY Z DIRECTION (m)	1.00E+00
PORE VELOCITY (m/y)	5.70E+02
WELL SCREEN THICKNESS (m)	1.50E+01
DISTANCE TO RECEPTOR ALONG X AXIS (m)	3.65E+00
DISTANCE TO RECEPTOR ALONG Y AXIS (m)	0.00E+00
DISTANCE TO RECEPTOR ALONG Z AXIS (m)	0.00E+00
RADIOLOGICAL CARCINOGENIC SLOPE FACTOR (1/Ci)	9.40E+00
UNITS OF CONTAMINANT	Ci

LIMITING SOIL CONCENTRATION CALCULATION			
>>> INITIAL ACTIVITY CONVERTED TO	MASS (mg) 8.86E-05		
>>> VALUES CALCULATED IN SOURCE SUBROUTINE			

LEACH RATE CONSTANT (1/y)	6.8347E-05		
UNSATURATED PORE VELOCITY (m/y)	2.4390E-01		
DECAY CONSTANT(S) (1/y)	7.8767 E -02		
RETARDATION FACTOR(S) (SATURATED)	1.2360E+03		
RETARDATION FACTOR (UNSATURATED)	3.0222E+02		
SOLUBILITY LIMITED MASS (mg)	5.2336E+13		
SOLUBILITY LIMITED ACTIVITY (Ci)	1.3817E+13		
TRANSIT TIME IN UNSAT ZONE (years)	7.1868E+03		
FRACTION DECAYED DURING UNSAT TRAN	ISPORT 1.0000E+00		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
>>> EXPOSURE DATA FOR LIMITING SOIL CONCENTRATION			
*************			
INTEGRATION TIME (years)	30		
BODY WEIGHT (kg)	7.000E+01		
AVERAGING TIME (days)	2.550E+04		
WATER INTAKE RATE (L/d)	2.000E+00		
EXPOSURE FREQUENCY (days/year)	3.500E+02		
EXPOSURE DURATION (years)	3.000E+01		
RADIOLOGICAL DOSE LIMIT (rem/y)	4.000E-03		
CARCINOGENIC RISK CRITERIA	1.000E-04		
HAZARD QUOTIENT	1.000E+00		

*************

CARCINOGENIC RISK CALCULATION FOR RADIONUCLIDES

MAXIMUM GW CONCENTRATION FOR MBR #1: 1.92-234 Ci/L

AVERAGE GW CONCENTRATION FOR MBR #1: 1.25-234 Ci/L RISK = 2.47-229

MAXIMUM CARCINOGENIC RISK: 2.47-229

LIMITING PARENT GROUNDWATER CONC. (Ci/L): 5.07E-10

PEAK TIME (y): 7.193248E+03

LIMITING SOIL CONCENTRATION (Ci/m**3): 1.765+218

LIMITING SOIL CONCENTRATION (Ci/kg): 1.177+215

LIMITING INVENTORY IN SOIL (Ci): 9.471+219

LIMITING INVENTORY IN SOIL (mg): 3.587+220

SPECIFIC ACTIVITY (Ci/g): 2.640E+02

NOTE: THE LIMITING SOIL CONCENTRATION OF 1.177+212 Ci/g

EXCEEDS THE SPECIFIC ACTIVITY OF THE NUCLIDE.

WARNING !!! THE LIMITING SOIL MASS OF 3.587+220 mg

EXCEEDS THE SOLUBILITY LIMITED SOURCE MASS OF 5.234E+13 mg

'Manganese, ARA-25, hazard quotient'

TITLE

RMI, TOPER, PNDFLX, THETAP, EVAP, WAEFF

1 0 KFLAG, NPROG

30 0 INTIME

7.3 4.9 1.5 AL, WA, THICKS

0.1 .41 .41 PERC, THETAS, THETAU

1.5 50. 0. RHOS, ZKDS, RC2

1.9 5. RHOU, ZKDU

1.E38 ATHALF

1.14E+08 54.9 1.0e6 QI, ZMW, SL

1.9 .1 5. RHOA, PHI, AKD

9. 4. 1.0E-9 570.0 AX, AY, VX

15.0 5.8 THICK, DEPTH

IMODE, IMODEL

RFD

XD, YD

9E2 2. 7.58E5 .41 0. 165.

6 1

1.4E-01

3.65 0. 0.

70. 1.1e4 2. 350. 30. 4.e-3 1.0e-4 1. BW AT WI EF ED DLIM CRISK HQ

1 6 7 1.0e-6 ISOLVE, JSTART, JMAX, EPS

1 NTIMES